Email updates

Keep up to date with the latest news and content from Journal of Ovarian Research and BioMed Central.

Open Access Research

Microarray analysis of Foxl2 mediated gene regulation in the mouse ovary derived KK1 granulosa cell line: Over-expression of Foxl2 leads to activation of the gonadotropin releasing hormone receptor gene promoter

Jean M Escudero1, Jodi L Haller2, Colin M Clay3 and Kenneth W Escudero1*

  • * Corresponding author: Kenneth W Escudero kfkwe00@tamuk.edu

  • † Equal contributors

Author Affiliations

1 Department of Biological and Health Sciences, Texas A&M University- Kingsville, Kingsville, TX, USA

2 Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA

3 Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA

For all author emails, please log on.

Journal of Ovarian Research 2010, 3:4  doi:10.1186/1757-2215-3-4

Published: 18 February 2010

Abstract

Background

The Foxl2 transcription factor is required for ovarian function during follicular development. The mechanism of Foxl2 regulation of this process has not been elucidated. Our approach to begin to understand Foxl2 function is through the identification of Foxl2 regulated genes in the ovary.

Methods

Transiently transfected KK1 mouse granulosa cells were used to identify genes that are potentially regulated by Foxl2. KK1 cells were transfected in three groups (mock, activated, and repressed) and twenty-four hours later RNA was isolated and submitted for Affymetrix microarray analysis. Genesifter software was used to carry out analysis of microarray data. One identified target, the gonadotropin releasing hormone receptor (GnRHR) gene, was chosen for further study and validation of Foxl2 responsiveness. Transient transfection analyses were carried out to study the effect of Foxl2 over-expression on GnRHR gene promoter-luciferase fusion activity. Data generated was analyzed with GraphPad Prism software.

Results

Microarray analysis identified 996 genes of known function that are potentially regulated by Foxl2 in mouse KK1 granulosa cells. The steroidogenic acute regulatory protein (StAR) gene that has been identified as Foxl2 responsive by others was identified in this study also, thereby supporting the effectiveness of our strategy. The GnRHR gene was chosen for further study because it is known to be expressed in the ovary and the results of previous work has indicated that Foxl2 may regulate GnRHR gene expression. Cellular levels of Foxl2 were increased via transient co-transfection of KK1 cells using a Foxl2 expression vector and a GnRHR promoter-luciferase fusion reporter vector. The results of these analyses indicate that over-expression of Foxl2 resulted in a significant increase in GnRHR promoter activity. Therefore, these transfection data validate the microarray data which suggest that Foxl2 regulates GnRHR and demonstrate that Foxl2 acts as an activator of the GnRHR gene.

Conclusions

Potential Foxl2 regulated ovarian genes have been identified through microarray analysis and comparison of these data to other microarray studies. The Foxl2 responsiveness of the GnRHR gene has been validated and provided evidence of Foxl2 transcriptional activation of the GnRHR gene promoter in the mouse ovary derived KK1 granulosa cell line.